. text ted t to rota tex dit HTML to etes oss sier wri acr t earb"), ions . ke itry. etat text o ma "en erpr tive ge te.g. e int: erna L paut ( tiplsteps alt edit,he a HTM inp muling cted ach dit tu -w tes nt as havellow expe er ely ere yo uby neragume can e fo the aftrect whethis in/rt gee ar hat y th t. has stepindicesshat usr/bcripingl ext tt tr texsult ion to prois w #!/his s a s of t migh inale re rotatededis aich ts. # TTakest. ece you origf th tra ts neike , wh tex # stdou a piles, the ck i e exemenuld lusly ated the # ite ang s tod che f th movu wotaneo rot pen # To wrrent edit, an se orsort yoimul and nd o ne. # diffe ome tion1-2. ecaue cu Whats s inal t, a en do # ke srotaeps ous be thve. tex orig ayou t wh # 1. Maply t st tediecausuitiated hold he l tex this # 2. Apepea is lt bunint rot to rom ted. ated but # 3. R cessficu is l and ough le fenabl upd nce, in # pro diftextgina e en L fiipt the atie dable # Thisalsoive ori larg HTMascr paste of p reay # and rnat thedes: at's te a jav opy& bit its. t is Rubke }, # alteeditrovi t th nerawith en c fair l ed thar ine-li, %w{ # can pt p ayou to geser , th h a manua textasiequot %() # scri a l ipt brow page witose ing 's eple %{}, # Make scrin a TML textn th writt itulti of ter ## 1. thisTML the H dit ly o lly:l, buas m use Ras t # Run ut H via ly euick ficaiviauby hakestes. eral wan # 2. outp its anualte q peciy trse R.rb m quo Gen nd we # y ed to mitera by sactlecauntryouble for rs a # Appl eed you g Rut exs, b. ele+d ithm acte # 3. ll nlet ardins nouageientsing Algor char paperpplyg # stiill regons ilangnvenmon ast ces: are nal ply ardin # Youol w hingtatither e co com "A Feren els rigi sim regato # to re trienny o quit the on diff r pix . O andailsnter # e mole oo ma areourse asedtwo e ous. tionates detn ce o # Onltiped tthatof c is bith sincalue rotardine toatio is n # mumparors and ithm h, w ls, er v r of coot du rot here ns d # coerat//, lgor Paet pixeract enteinput, but to r, tratio, an. # op{}, on aAlan ing cha ng cthe as isspecion. ente opeinput two # %W tati by blendinal ardiing ues th reunct on ctionthe ne or # e roion" for orig reghift vale witer f tatirota of a li # Thotat ort the tionut snate car_cen e roise hapeextr # R supperve idera aboordixtra get stablockwhe s an ons. # No pres consthingd coed e see ore terclon tting tatiugh # - to nal any-basee neble, a mcoun lot nser e roltho # itio sayto 0ng, wersi tingise/ds a by i oducd, a # Addsn'trms undit rev elecockwepenible ] prstea # - doensfor routpu in se clIt dvers pi/2t in ly to # trategehe o care utivt. e re i/2, tex ical # inke t tra onsecr ou mad [-pt the omat # ma h exat c othen be weenstorible. aut # wite theachon ca beto divers sted # Evenantecel tati glesnd te re adju s. # guar cane ro y ane tell b l be ment # willn th Onlrang sti wil ele # ofte gle.that ight idth text # n anide ion m . W ble erialink atiooutsrmat/ 13 entss. edita les. he scan l Rotles nsfo:PI elemcell all tup . T we # Ang traath: edit ter to eme) textthat # the = M of harac ched graph ate uch her. #NGLE ightre c.9em" atta al, rotD, sh ot A e hesqua= "0 be seri me toue I eac Linure GHT me to x, aphe uniqs to # ens_HEI s na (y, d grme aation #LINE clas "t" t of s anaphe rot yle SS = a lis nateh grrent # St_CLA as ordi eaciffe EDIT nput he cogivess d ad i ed td to acro # Lo y neaddeheme # onl is grap 0 # Wemberame put _y = {|c| # nuhe sd_in] ursor ster # t loa = [ = c ine|_clu 8 defdataor_x 0 ne{|lheme x % cursal =h_li_grap 1 sor_r\n" ] seri.eaceach= " "x +=" cur= "\ , c] ARGFine. c =rsor_ "\t 8 - c = rial l if cu c ==x +=" || x, se lsifrsor_ "\n0 sor_ e cu c ==x = 1 cur lsifrsor_y += r_y, t e cursor_ urso thay cu [[c= 1 ilityed bext. lse ta +=_x +1 obabollowal t e daursor += e pron frigin cerial ass. s thtatihe o s of m easee roin t l be hat end nter incrkwislts wilges thave m ce nter clocresu heret ed We } a fro n cee. a sa) o, taighion. dat nter atio, i.e ver zer strotat } turn n ce rotible vic frome.g.he r , re tatio s asvers (or away er, er t tione. nd e ro mase retion und cent aftcts: rotaitiv e mput er ofll brota e rotionld betifa o. ox. ftern pos # Co centon wiise ow wrotashouse ar zerng box aemai r # ing tatilockw to hthe hey the d ofunding bon r othey # Use roterc due ear an tduce nsteaf bounditati s atbilittion # thcoun ely, ts nd tho re ty iter of bor ro factersiul op # a unattifacaggegs t fini cenner oafte arti revusef f # forte arore jthin e ino be cor and get theost er or # Unsiblut mious itivon to before we losehe m centr fo # vime o var postation ts be thatlso be t theedito # coried owardf rotatinate e is we a to ause an and the t # t nd tter of roordi thes andpears ll catesaddsm in tha # Rou center ol co of ter,s ap s wienerrts rithd for # - Set cenat al all cen mas cterly guppoalgo neer). # - Seth th with ther of charat onso sion reatithe # - suc ened d ofente. ing script alotat a gol e # happnsteang cacts emovhis r thahe re iss to # hat es i Usirtif nd rhy tditoent tther thi # Wplacure.the a ng ais wan eplemsure for # featite ertiich ave reimnot need # desp t ins, whTo h to am any # thashiftt. need. Ie is # Note to g texill riptther # massacin we wvascure # repltes,ed jaot sa) # deleerat am n(dat ze # genl (Ienter ta.si # tooet_cy = 0t| / da #ef g = cach{|1] cy d cxta.e+= t[0] ize, da cx += t[ ta.s es. cy / da inat n cx oorda) } etur to ccy, . r ion cx, 2) gain end rotatta, (a / X a ply te(da:tan(a) | r in # AprotaMath::sinp{|tnts. shea def x = Math:a.maonte then ry = n dater c cx Y, retur Cent1] - cy r in me). r # = t[0] - shead aphe eme. x = t[ X, round , gr graph y r in y).round erial ach Shearx * x).roun x, s nd e # -= (ry * y). (y, arou x += (rx * ted ] pan y -= ( updat[3] ne s x urn 2], ith o # Ret, t[ xt wfix) [y, x L te_pre HTM, id } k ofdata0] n d blocock(ata[ ].min en rate e_bl = d t[1]].mi Geneneratin_xt| _x, t[0] # f ge_y, mch{|[min_y, de minta.eax = [min >\n" da min_y = ix}\" min_ x pref min_y {id_ } x = min_=\"# r_y) rsor_y = e id{|t| curso cursor_" '"> if inninneext xt =gt;" SS +_s + sif er_tr_te= "& x) +_CLA].to el inninneext rsor_EDIT t[2 sif er_t - cu"' + ix + el inn (x ass=_pref d " *n cl+ id low. en += "" ial ns. i" next. by r_x n

a = .emp (data(dat -ANNGLE ")}< > datdatarn nter_size cy,y, A d> r> , "Ltd> }< ng="4eft_ "M"ta, end cy heig ate(e(dat /tit addiock(lata,t_da cx,th, rototat est< ellpe_block(drigh wid ta = = r te t 1" cerate_bllock( t_dadata >Rota ng="{generatte_b l> lefght_ OT" itle pacip">#{gennera labe ri <<"Ed>##{ge le) "> togg or prtml> der=t" valignn="t edit to l> errght, bor"left" vvalig id="(ESC">e="c>Enabdisplace . ne tcreap. aluean ae the ;
  • Arrow shi und riptng vWe ccaus ght)
  • Aab /+Z = vascpacio. ill tHei
  • TCtrliv> xt/jaer-sratich wM");; offse <
  • > e { p.ste = erro ; ; var min_ r = e"em" if( erro x + t_x;); }"; { min__x = bes("L"IGHT best ng =ByIdE_HE Spaciment{LINt_x;"); T}"; } tteretEle= "# besd("REIGH e.lent.gight ng =tByINE_H; } stylcumeneHeSpaciemen#{LIst_x p.= doe.littergetEl = "= be p style.leent.eighting p.stylocumineHrSpac ta))} p. = dle.lette e; t_da } p.style.l tate.fals . (lefa))}ata)) p.sty le sit = tion ns. _map(datht_d p itabe_ed posi itio down_map(rig / Wrnabl rsor ; pos rsor_down_map )} /ar e t cu "M0" rsor e_cursor_down data) v rrenor = t cu erate_cursor_ eft_)} ))} / Cucurs o nex generate_cu ap(lata)_data /var ng t "L", generat ht_map(dight appi = map("M", gen _right_map(r // Mdown rsor_map("R", ursor_right_m var t_cursor_map( te_cursor_rig { nvert_cursor_ nerate_cursor #{convert_cu , generate_c #{conver ("L", genera rs. #{co ht = _map("M", ge ) pai }; rig ursor_map("R" text var rt_cursor_map nal { onvert_cursor rigi #{convert_c x, o n)) #{conve uffi . (dow #{c (id s []; ions tries }; of ist = osit t.en ) Listdo_l or p bjec ght) // r un curs of O s(ri va erse}; ue] ntrie Rev = { {}; val ct.e //r upft =[key, Obje var lenst key; of var(co e] = lue] fo valu , va on. { up[ [key ey; siti onst = k e po ; }or(c alue] . e sam tyle; f ft[v okes$/; t th = style; { le ystr!-~] rs a tyle = style ed ke /^[ actele) x).style = s } cepteys = char sty suffix).style / AcditK for (id, (1);" + suffix).s /ar e tyle tyle bstrd("L" + suffi v et s setS d.sutById("M" + // Stion = iementById("R . func uffixetElementByI tion { ar sent.getElemen posi vocument.getEl n. sor document.g itio s cur . 0"; docum posd) viou tion ff808 d rsoror(i pre posi nd:# ; } te cuCurs t at rsor ); grou xt]) Updan set ligh""); w cu f80"back erTe // ctio highor, t ne :#80f = " .inn fun lear curs ht a oundstyle ion. fix) { // Ctyle( hlig ckgrid). osit suf setS hig "bayId( me p "M" +t; pdate id;sor,entB at sa yId(= text; // Usor =(curElem ers entBext = text; curStyle.get ractxt) ElemnerText = tex setument cha, te .get).innerText doc fort(id 1); umentffix).innerT texteTex str( doc + suffix).in } lace plac .subfix,("L" + suffix Repon re = id[sufById("M" + su //ncti fix ush(mentById("R" fu r sufst.ptElementById { vado_lit.getElement uncument.getEle document.ge it. [1]; documen t ed ) ntry[1]; do ecen = 0 t = entry[1]; st r() th = rText = entry } do moundo leng innerText = e / Untion ist. ); ix).innerTex /func do_l pop( suffix).inne { f( un ist. L" + suffix). i urn; do_l[0];Id("M" + suff { ret = unntryntById("R" + try = elementById(" }ar enffixgetElementBy x); var suent.getEleme suffi vdocument.getEit ) ] + document.e_ed or[0 documnabl curs "; if( e sor( line { tCur "in se us. lay = } statt() it; disp dit _edi e_ed yle. ; } ge eggle nabl ).st one" Chann to = !e) elp" = "n //nctio dit dit ; Id("h play ; fu le_ele_e sor)ntBy .dis edit { enabenab (curleme tyle able_ ) if( rsorgetE ").s = en S}") { etCuent. ; help ked CLAS socum "")yId(" chec DIT_ d sor,entB t"). ("#{E } e (curElem ("edi Name els tyle.get ById lass { setSment ment sByC { docu tEle ment => t.ge s. etEle ent) } umen enernt.g (ev doc listcume ick", ent f do ("cl } d ev t o ener ) => { // Adonst Listedit nt) ) ) for(c ventble_ id); (eve "Z" { addE ena r(t. n", y == t. if( urso ydow t.ke { setC r("ke even tene || } tLis) e" ) = "z" ); Evendit Escap ey = } .addle_e == " nt.k ) ) } mentenab key (eve "Z" docuf( ! ent. (); && y == i ( ev edit rlKey t.ke { if gle_ t.ct even { tog even " || if( = "z }lse ; ey = e do() nt.k { un (eve n; y && s) ) }etur rlKe tKey r t.ct (edi ); } even match .key if( (); key. vent { undo ent. or, er]); ) ( ev curscurso wUp" e" ) } e if ext(ght[ Arro spac els aceTr(ri == " Back { replurso .key ); n" ) == " setC vent rsor] wDow key f( e p[cu Arro vent. ) } se i or(u == " || e " " el Curs .key r]); ft" == { set vent curso owLe .key f( e own[ "Arr event } se i or(d y == ; || M"} el Curs t.ke or]) ght" ": "L"}; { set even [curs owRi , "R": " if( left "Arr "L", "R } lse sor( y == ); "M": "R" e tCur t.ke sor] "R", "M":; { se even t[cur b" ) L": "M", r(1) if( righ "Ta ? {"L": subst }lse sor( ey == Key : {"sor. e tCur nt.k hift cur { { se eve ent.s ]] + ) => if( = ev or[0 vent }else ext [curs " ) , (e { ar n nextsor); cape ick" v r = (cur "Es ("cl ursorsor ey == ener cetCu nt.k tList s eve ); Even } if( dit( (); .add else le_e fault it") { togg ntDe ("ed reve tById } nt.p emen eve etEl(); ; nt.gedit })cumegle_ do tog ; pt> > })scri html