.
text
ted t to
rota tex
dit HTML
to etes oss
sier wri acr
t earb"), ions .
ke itry. etat text
o ma "en erpr tive
ge te.g. e int: erna
L paut ( tiplsteps alt edit,he
a HTM inp muling cted ach dit tu
-w tes nt as havellow expe er ely ere yo
uby neragume can e fo the aftrect whethis
in/rt gee ar hat y th t. has stepindicesshat
usr/bcripingl ext tt tr texsult ion to prois w
#!/his s a s of t migh inale re rotatededis aich ts.
# TTakest. ece you origf th tra ts neike , wh tex
# stdou a piles, the ck i e exemenuld lusly ated the
# ite ang s tod che f th movu wotaneo rot pen
# To wrrent edit, an se orsort yoimul and nd o ne.
# diffe ome tion1-2. ecaue cu Whats s inal t, a en do
# ke srotaeps ous be thve. tex orig ayou t wh
# 1. Maply t st tediecausuitiated hold he l tex this
# 2. Apepea is lt bunint rot to rom ted. ated but
# 3. R cessficu is l and ough le fenabl upd nce, in
# pro diftextgina e en L fiipt the atie dable
# Thisalsoive ori larg HTMascr paste of p reay
# and rnat thedes: at's te a jav opy& bit its. t is Rubke },
# alteeditrovi t th nerawith en c fair l ed thar ine-li, %w{
# can pt p ayou to geser , th h a manua textasiequot %()
# scri a l ipt brow page witose ing 's eple %{},
# Make scrin a TML textn th writt itulti of ter
## 1. thisTML the H dit ly o lly:l, buas m use Ras t
# Run ut H via ly euick ficaiviauby hakestes. eral wan
# 2. outp its anualte q peciy trse R.rb m quo Gen nd we
# y ed to mitera by sactlecauntryouble for rs a
# Appl eed you g Rut exs, b. ele+d ithm acte
# 3. ll nlet ardins nouageientsing Algor char paperpplyg
# stiill regons ilangnvenmon ast ces: are nal ply ardin
# Youol w hingtatither e co com "A Feren els rigi sim regato
# to re trienny o quit the on diff r pix . O andailsnter
# e mole oo ma areourse asedtwo e ous. tionates detn ce o
# Onltiped tthatof c is bith sincalue rotardine toatio is n
# mumparors and ithm h, w ls, er v r of coot du rot here ns d
# coerat//, lgor Paet pixeract enteinput, but to r, tratio, an.
# op{}, on aAlan ing cha ng cthe as isspecion. ente opeinput two
# %W tati by blendinal ardiing ues th reunct on ctionthe ne or
# e roion" for orig reghift vale witer f tatirota of a li
# Thotat ort the tionut snate car_cen e roise hapeextr
# R supperve idera aboordixtra get stablockwhe s an ons.
# No pres consthingd coed e see ore terclon tting tatiugh
# - to nal any-basee neble, a mcoun lot nser e roltho
# itio sayto 0ng, wersi tingise/ds a by i oducd, a
# Addsn'trms undit rev elecockwepenible ] prstea
# - doensfor routpu in se clIt dvers pi/2t in ly to
# trategehe o care utivt. e re i/2, tex ical
# inke t tra onsecr ou mad [-pt the omat
# ma h exat c othen be weenstorible. aut
# wite theachon ca beto divers sted
# Evenantecel tati glesnd te re adju s.
# guar cane ro y ane tell b l be ment
# willn th Onlrang sti wil ele
# ofte gle.that ight idth text
# n anide ion m . W ble erialink
atiooutsrmat/ 13 entss. edita les. he scan l
Rotles nsfo:PI elemcell all tup . T we
# Ang traath: edit ter to eme) textthat
# the = M of harac ched graph ate uch her.
#NGLE ightre c.9em" atta al, rotD, sh ot
A e hesqua= "0 be seri me toue I eac
Linure GHT me to x, aphe uniqs to
# ens_HEI s na (y, d grme aation
#LINE clas "t" t of s anaphe rot
yle SS = a lis nateh grrent
# St_CLA as ordi eaciffe
EDIT nput he cogivess d
ad i ed td to acro
# Lo y neaddeheme
# onl is grap 0
# Wemberame put _y = {|c|
# nuhe sd_in] ursor ster
# t loa = [ = c ine|_clu 8
defdataor_x 0 ne{|lheme x %
cursal =h_li_grap 1 sor_r\n" ]
seri.eaceach= " "x +=" cur= "\ , c]
ARGFine. c =rsor_ "\t 8 - c = rial
l if cu c ==x +=" || x, se
lsifrsor_ "\n0 sor_
e cu c ==x = 1 cur
lsifrsor_y += r_y, t
e cursor_ urso thay
cu [[c= 1 ilityed bext.
lse ta +=_x +1 obabollowal t
e daursor += e pron frigin
cerial ass. s thtatihe o
s of m easee roin t l be hat
end nter incrkwislts wilges thave
m ce nter clocresu heret ed We
} a fro n cee. a sa) o, taighion.
dat nter atio, i.e ver zer strotat
} turn n ce rotible vic frome.g.he r ,
re tatio s asvers (or away er, er t tione.
nd e ro mase retion und cent aftcts: rotaitiv
e mput er ofll brota e rotionld betifa o. ox. ftern pos
# Co centon wiise ow wrotashouse ar zerng box aemai r
# ing tatilockw to hthe hey the d ofunding bon r othey
# Use roterc due ear an tduce nsteaf bounditati s atbilittion
# thcoun ely, ts nd tho re ty iter of bor ro factersiul op
# a unattifacaggegs t fini cenner oafte arti revusef f
# forte arore jthin e ino be cor and get theost er or
# Unsiblut mious itivon to before we losehe m centr fo
# vime o var postation ts be thatlso be t theedito
# coried owardf rotatinate e is we a to ause an and the t
# t nd tter of roordi thes andpears ll catesaddsm in tha
# Rou center ol co of ter,s ap s wienerrts rithd for
# - Set cenat al all cen mas cterly guppoalgo neer).
# - Seth th with ther of charat onso sion reatithe
# - suc ened d ofente. ing script alotat a gol e
# happnsteang cacts emovhis r thahe re iss to
# hat es i Usirtif nd rhy tditoent tther thi
# Wplacure.the a ng ais wan eplemsure for
# featite ertiich ave reimnot need
# desp t ins, whTo h to am any
# thashiftt. need. Ie is
# Note to g texill riptther
# massacin we wvascure
# repltes,ed jaot sa)
# deleerat am n(dat ze
# genl (Ienter ta.si
# tooet_cy = 0t| / da
#ef g = cach{|1] cy
d cxta.e+= t[0] ize,
da cx += t[ ta.s es.
cy / da inat
n cx oorda)
} etur to ccy, .
r ion cx, 2) gain
end rotatta, (a / X a
ply te(da:tan(a) | r in
# AprotaMath::sinp{|tnts. shea
def x = Math:a.maonte then
ry = n dater c cx Y,
retur Cent1] - cy r in me).
r # = t[0] - shead aphe eme.
x = t[ X, round , gr graph
y r in y).round erial ach
Shearx * x).roun x, s nd e
# -= (ry * y). (y, arou
x += (rx * ted ] pan
y -= ( updat[3] ne s
x urn 2], ith o
# Ret, t[ xt wfix)
[y, x L te_pre
HTM, id
} k ofdata0] n
d blocock(ata[ ].min
en rate e_bl = d t[1]].mi
Geneneratin_xt| _x, t[0]
# f ge_y, mch{|[min_y,
de minta.eax = [min >\n"
da min_y = ix}\"
min_ x pref
min_y {id_
} x = min_=\"# r_y)
rsor_y = e id{|t| curso
cursor_"